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Abstract 
Traditional molecular-replacement translation func- 
tions are based on direct- or reciprocal-space correla- 
tions between the observed diffraction amplitudes 
and the calculated amplitudes and phases of the 
symmetry-related molecular transforms of the search 
fragment as a function of the displacement vector. 
An alternative method that has been described is 
based on evaluating a list of phase invariants as a 
function of the position of the search model in the 
unit cell and seeking those regions which satisfy the 
expectation value of these invariants as predicted by 
probability theory. As originally formulated, this pro- 
cedure required the iterative computation of the 
phases and the evaluation of the list of invariants as 
the search model was stepped over the grid points 
defining the asymmetric portion of the unit cell. A 
new computational procedure is described whereby 
the values of the invariants are expressed solely as a 
function of the displacement vector r as a Fourier 
series that can be evaluated by a standard fast Fourier 
transform (FFT) without having to compute and 
insert the values of the phases based on the search 
model at each grid point. 

Introduction 
Translation functions are computational algorithms 
by which the true unit-cell location of a correctly 
oriented molecule or fragment, whose absolute posi- 
tion is unknown, may be determined. Various tech- 
niques to determine translation solutions exist and 
include vector search methods (Nordman & Schilling, 
1970), electron-density convolutions (Rossmann & 
Blow, 1962), Patterson correlation functions (Vand 
& Pepinsky, 1956) and computing the crystallo- 
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graphic residual on a grid encompassing the searched 
space (Booth, 1945; Bhuiya & Stanley, 1964). An 
up-to-date and thorough review of the literature by 
Beurskens and co-workers is highly recommended to 
those who wish to become more familiar with these 
established methods (Beurskens, Gould, Bruins Slot 
& Bosman, 1987). 

An alternative method that has been proposed and 
tested involves the evaluation of direct-methods 
phase invariants as a function of the position of the 
fragment in the unit cell (Fortier & Langs, 1979). 
These grid search procedures produced encouraging 
results for a number of different phase-invariant 
types, including both negative and positive quartets 
(Hauptman, 1974) as well as the three-phase 
seminvariants (Hauptman & Green, 1978). A figure 
of merit is computed at each grid point, based on an 
E-weighted sum of the cosine values of a particular 
invariant type, and the translation solution is expec- 
ted to produce either a positive maximum or a nega- 
tive minimum, depending on whether the group of 
invariants is expected to be positive or negative. For 
example, NQEST (DeTitta, Edmonds, Langs & 
Hauptman, 1975) is a figure of merit that is based on 
the expected negative value of quartets, EhEkEiEm, 
for which the magnitudes oi" the four main terms 
Eh, Ek, El and Em are large, and the magnitudes of 
the three cross terms E h + k ,  F__~+ I and F__~+ m a r e  small, 
e.g. less than 0.70, where h + k + l + m = 0 ,  B =  
21EhEkEIEm]/N and N is the number of equivalent 
atoms in the primitive unit cell. 

NQEST= E BCOS(¢h+~Pk+~0,+~0m)/E B. (1) 
h,k,I / h , k , I  

NQEST is evaluated from the phases computed from 
the search model at each point in the grid search and 

O 1992 International Union of Crystallography 



DAVID A. LANGS 173 

should produce a large negative minimum in the 
vicinity of the true location-vector solution. Similar 
expressions for the triple invariants, three-phase 
seminvariants and quartets having a positive expected 
value, as a consequence of the three cross terms being 
large, e.g. greater than 1.5, can be formulated. It will 
be shown that these phase-invariant cosines, which 
are a function of the phases ~0h, may be completely 
expressed as a function of the displacement vector r, 
independent of the values of the phases computed at 
each grid point, such that these translation-function 
figures of merit can be efficiently calculated as a FFT. 

Analysis 

Phased normalized structure factors, Eh, are readily 
expressed in terms of the transforms of oriented 
molecular fragments, Ehjp, and displacement vectors, 
rp, which relate the arbitrary coordinates, rip, of the 
transform to the crystallographic coordinates, rj, of 
the correctly positioned group by means of rj = 
rp+rjp. Thus, for a crystal structure possessing n 
equivalent space-group positions and m independent 
correctly oriented molecules in the asymmetric unit 

m 
Eh=~,~ F%pexp27ri(hj.rp+h.tj), (2) 

J p 

where hj = R~ • h, where Rj is the matrix operator, and 
tj the translation component of the j th equivalent 
space-group position. Similar relationships exist for 
properly scaled Fh data, but in the context of evaluat- 
ing direct-methods phase invariants, the Eh ampli- 
tudes are to be preferred. It can be shown that the 
three-phase structure products 

i s  EhEkE! = ~ F%pEkj,qEb,,u 
j , j ' , j "  p,q,u 

xexp2~ri(hj.rp+kj,.rq+lj,,.ru), (3) 

where h + k + l = 0 ,  can be calculated, provided one 
has reliable estimates for the various phase com- 
ponents hi- rp, which are generally unknown. Here, 
for the sake of a cleaner notation, the phase due to 
the translation components of the symmetry operators 
indicated in (2) are incorporated into the phase of 
the individual transforms. Various methods for 
estimating these phase invariants (3) utilizing cor- 
rectly oriented molecular fragments for which the 
position vectors r, are not explicitly known have been 
published elsewhere (Kroon & Krabbendam, 1970; 
Thiessen & Busing, 1974; Main, 1976; Langs, 1985). 
A similar expansion for four-phase quartet invariants 
is shown to be 

j , j ' , j " , j "  p 

× exp 27ri[(hj + kj, + Ij,,+ my,,) • rp], (4) 

where for the sake of simplicity only one molecular 
displacement vector rp is considered. Phase-invariant 
translation functions that will produce a solution 
maximum when r = rp may be obtained by formulat- 
ing these structure products as a function of the 
displacement vector r, 

EhEkE,(r)= ~ ~ F_%pEkj,pEb,, p 
j , j ' , j "  p 

x exp 27ri [(hj + kj,+ Is,) • r], (5) 

and multiplying the computed value of EhEkE~(r) by 
the fixed structure product magnitude I E.EkE, I obser- 
ved for the data. 

MF(r) = E Shk, IEhEkE, IEhEkE,(r) (6) 
h,k 

where Shk~ is the expected sign of the invariant (+1 
for triples and positive quartets and -1  for negative 
quartets). This function can be evaluated for the full 
range of values for r as a FFT, thus allowing all 
cosine-invariant values to be efficiently computed 
over the permitted subspace of the cell, rather than 
over the values of the generated sets of amplitudes 
IEh(calc.)l and phases ~Ph computed at each grid point, 
i.e. 

ME(r) = E &k, EhEkE, IEhfkE,(calc.)l 
h,k 

X COS ((~h"~- (~k"~- ~ ! ) ,  

a computation that is extremely inefficient. 

(7) 

Results 

Phase-invariant translatioh functions were evaluated 
using data that were measured for the orthorhombic 
P212~2~ crystal structure of the dodecadepsipeptide 
isoleucinomycin (Pletnev, Galitskii, Smith, Weeks & 
Duax, 1980) : C6oHlo2N6018, a = 11.516, b = 15.705, 
c=39.3101~,Z=4, N=84x4. The 700 largest E 
values were used to compile a list of 20 000 triples, 
10 000 positive quartets (cross terms greater than 1.15) 
and 8000 negative quartets (cross terms less than 
0.70). The phase-invariant functions for these three 
classes of invariants were computed by the FFT 
algorithm at a grid interval of -0.25 ~ for search 
fragments of various sizes (42, 21, 15 and 10 atom 
fractions of the 84 atom structure) and the peaks from 
the corresponding maps were ranked according to 
size and compared. In addition, it was decided to 
compute composite Fourier maps representing the 
weighted average of the coefficients used in the posi- 
tive and negative quartet syntheses. The results are 
presented in Table 1. 

An inspection of the results in Table 1 indicates 
that the phase-invariant translation function can pro- 
duce useful information for search fragments that 
represent as little as 20% of the structure. The rank 
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Table 1. Relative peak height and rank of phase- 
invariant translation-function solutions for fragments 

of varying sizes 

Phase-invariant translation-function analysis of isoleucinomycin 
using triples, positive quartets, negative quartets and a combination 
of both positive and negative quartets. Column one notes the 
number of atoms out of 84 that describe the relative size of the 
molecular fragment. The columns labeled rank give the position 
of the solution vector in the magnitude-sorted peak list and ratio 
gives the relative size of the solution vector as compared to the 
largest spurious peak. 

Positive and 
Positive Negative negative 

Triples quartets quartets quartets 
N/84 Rank Ratio Rank Ratio Rank Ratio Rank Ratio 

42 1 1.55 1 1.49 1 1.18 1 1.84 
21 1 1.45 1 1.06 11 0.84 1 1.41 
15 6 0.93 25 0.68 16 0.63 2 0.91 
10 25 0.69 46 0.54 29 0.63 12 0.71 

and relative size of the solution vector tends to 
decrease as the fragment becomes smaller, but the 
patterns of spurious peaks produced by the triples 
and negative quartets, or the positive and negative 
quartets, do not appear to be similar. As a con- 
sequence, the maps produced by these syntheses may 
be added, and the magnitude of the solution vector 
will be enhanced as the spurious peaks do not rein- 
force one another. This may be seen in Table 1 by 
inspecting the improvement in the peak rank and 
intensity ratio shown by the joint positive- and nega- 
tive-quartet analysis as compared to the results pro- 
duced by the positive and negative quartets separ- 
ately. 

The computational efficiency of the FFT algorithm 
as compared to the traditional methods of phase- 
invariant evaluation over the grid of the cell is 
impressive. The three-dimensional analysis for the 
structure which is presented in Table 1 required less 
than 10 min on a VAX 8600 computer system. The 
traditional method would require 2 or 3 d, a time 
saving on the order of 500-fold. 
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Abstract 

Lattice sites which have a proper or improper sub- 
group of 222 as the site group may exhibit an anhar- 
monic twisted local potential. The generalized 
Debye-Waller factor for atoms occupying such sites 

is derived. If the twist axis is fixed by symmetry 
considerations the approximation used needs, in 
addition to three harmonic parameters, one anhar- 
monicity parameter, essentially the local pitch. In the 
most general case with no symmetry restrictions three 
Eulerian angles are needed in addition to the pitch. 
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